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A PHYSICALLY MOTIVATED DOMAIN DECOMPOSITIONS
FOR SINGULARLY PERTURBED EQUATIONS

Jeffrey S. Scroggs
Institute for Computer Applications in Science and Engineering

NASA Langley Research Center
Hampton, VA 236651

ABSTRACT

A domain decomposition algorithm suitable for the efficient and accurate solu-
tion of a parabolic reaction convection diffusion equation with small parameter on
the diffusion term is presented. Convergence is established via maximum principle

arguments. The equation arises in the modeling of laminar transonic flow. Decom-
position into subdmomains is accomplished via singular perturbation analysis which
dictates regions where certain reduced equations may be solved in place of the full

equation, effectively preconditioning the problem. This paper concentrates on the the

theoretical basis of the method, establishing local and global a priori error bounds.
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1. Introduction. In this paper a domain decomposition algorithm for the solu-

tion of

(1) P[u] := ut + uu, - cu -ru = o,

where e is a small positive parameter is presented. This equation contains many of
the properties that make the gaedynamic equations difficult to solve; namely, it is
capable of modeling rapid variations such as shocks and boundary layers. A priori
error bounds are obtained using asymptotic analysis, and are verified via maximum
principle arguments. The analysis also identifies parallelism intrinsic in the physics
of the problem. This parallelism may be exploited by the particular numerical meth-
ods, allowing efficient use of parallel architectures. This paper concentrates on the
theoretical basis for the method, discussions of the numerical details may be found in
[10] and [15].

The method presented here is appropriate for certain problems arising when mod-
eling laminar transonic flow, such as through a duct of variable width. When modeling
transonic flow, except in regions of rapid variation such as in shocks and boundary
layers, convection and/or reaction terms dominate over diffusion. The reaction term
may, for example, arise from the effects of a variable cross sectional area in a duct,
thus this not a reacting flow. Asymptotic analysis identifies the regions where the
solution behaves different, subdividing the domain into the following two types of re-
gions: regions where the solution is smooth, where a reduced equation may be solved;
and regions of rapid variations, such as in a neighborhood of a shock, where the full
equation must be solved. The domain decomposition is independent of the choice of
numerical schemes for the subdomains, hence the numerics will be discussed in this
paper only briefly. In addition to dictating the domain decomposition, asymptotics
also provides a means of approximating solutions to the problems in the subdomains.
In this way, a set of simplified problems is obtained that is better conditioned for nu-
merical computations. The domain decomposition and preconditionings are reflected
in the theorems presented herein.

The asymptotic analysis involves the derivation of analytic upper and lower
bounds on the solution, and is performed in the style of Howes [4,5,6]. The method is
capable of obtaining solutions to (1) when the shock is not stationary, thus extending
Howes' studies [7,8] into the time-dependent regime.

The method is an iterative technique. In Section 3 the domain decomposition
and some preconditionings are presented. This includes an error analysis of the pre-
conditionings and the theoretical basis of the domain decomposition. In Section 5,
the method is summarized by outlining the algorithm.

2. The Quasilinear Problem. Consider the behavior of the solution of the
quasilinear parabolic equation (1) on the domain

(2) D:= {(z,t)0O_ z < b,0 < T},

subject to

(3) U(z,o)='Y(Z), o<Z<b;
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(4) u(0,t) = a(t), 0 < t < T; and

(5) u(b,t) = P(t), 0< t < T.

The portion of the boundary along which the data is specified is denoted by
I := {(x,t)10 z< < b, t = }{(x,t)I0_t<T,z=0,b}.

For the sake of simplicity, it is assumed that all boundaries are inflow boundaries,
that is, a(t) > ao > 0 and P(t) _5,6o < 0.

The reaction term may, for example, arise from the effects of a variable cross
sectional area in a duct. Howes [8] discusses the case when r(z) = -a'(z)/a(z), where
a(z) is the width of the duct (see Figure 1). The coefficient r is assumed to be bounded

A(x)

FIG. 1. Variabk widtk duct.

with bounded derivatives.
It is assumed that the boundary data are sufficiently smooth so that the solution

to (1) is uniquely defined (for example, see [2]). We are interested in the formation
of shocks, thus the data is assumed to be continuous. For example, the compatibility
conditions

(6) a(0) = "y(O), and -y(b) = P(0),

must be satisfied. In addition, It is assumed that the first derivatives of the solution
to the reduced (e = 0) equation

(7) Po[U] := U, + UU. - ru = 0

are continuous except along the shock. This requires, for example,

da d-y
(8) - -I r- 0, for (z,t)=(0,0);

2
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di5 d-1
(9) -+ y - r- = 0, for (x, t) = (b, o).

The problem is assumed to be nondimensionalized such that the diffusion co-
efficient e Is inversely proportional to the Reynolds number (see 1131). Based on
free-stream conditions in transonic flow, the Reynolds number for this problem is
large. Therefore, it is appropriate to exploit the smallness of the positive parameter
e in the analysis.

3. Analysis of the Preconditiontup. The method exploits preconditionings
to obtain computational efficiency and accuracy. The meaning of preconditioning is
broader than the usual meaning applied in the linear algebra setting. In this setting,
a problem is preconditioned if it is more tractable with respect to numerical compu-
tations. For example, in this section a preconditioner based on a physically motivated
domain decomposition is discussed. Regions where the solution behaves differently
are identified. The problem is better conditioned because each numerical method
used now needs only capture one type of behavior in the solution. In addition to
the domain decomposition, a preconditioner involving a transformation of the spatial
coordinate and a preconditioner involving a modification of the governing equation
will be presented.

The domain decomposition and the use of the reduced equation are closely related.
Asymptotic analysis identifies two types of regions. In the outer regions, the solution
is slowly varying and the eu, term is small. Thus, in the outer region subdomains,
the governing equation is modified by dropping this term with minor effects on the
error. The solution to the reduced equation will be described next.

Let U be a weak solution of (7) with boundary data (3-5), which is a solution
to (1) in the limit as e 1 0. For the analysis here, assume that U has a single shock.
Let the path of the shock be given by the curve (z, t) = (r(t), t). The initial and
boundary data are assumed to be smooth; thus, the shock does not exist at t = 0.
Rather, r is assumed to be undefined for t < tr , where t = tr is the time U becomes
discontinuous. It is natural to describe U in terms of the following functions:

UO(z t) for 0 < t < tr

U(Z,t)= U(z,t) for z<r-(t) and t>tr

U,(x,t) forx > r-(t) and t > tr .

For analytic methods to choose r, see Whitham [191 or Kevorkian and Cole [19].
The shocks in the system are assumed to be physical; thus, the solution will satisfy

the entropy condition

(10) u,(r(t),t) > * > u,(r(t),t),

where the speed s of the shock is given by the Rankine-Hugoniot jump condition t11,

(11) = [u,(r(t),t) + u,(r(t),t)]/2.

3
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The entropy condition may be written as

(12) 1A(t) = ug((t), t) - u,(r(t), t) > o

for t > tr.

The outer-region subdomainB are dictated by the regions where U is a good ap-
proximation to u. These are defined by bounding the difference U - u. The bounds
are reflected in the following theorem.

THEOREM 1. (Howes 16). Let u(z,t,c) be the solution to P[u] = 0 on D and
U(z, t) be the solution to Po[U] = 0 in the limit as e tend. to zero, each satisfying the
the boundary data (3-5). Assume that the boundary data (3-5) satisfy the compatibility
conditions (6),(8-9), and that a, P and -y, with their first and second derivatives are
all bounded. Then for e small enough

(13) Iu - Ul = 0(;& exp(-f'(z, t)/e'l]) + O(c)

when the derivative. of U are continuous across r, and

(14) lu - U- = 0(pexp[-f"/c'/'J) + O(c'/'6 exp[-f/e/f'']) + O(e)

in the more general case when the derivatives of U are not continuous across r. Here
f(z, t) is a distance function between (z, t) and (r, t), and 6 is an upper bound on the
difference of the normal derivative of U across F.

The subdomains are dictated by the error bounds of this theorem. These bounds
are small except in an asymptotically small neighborhood of the shock. The outer
region subdomain is the portion of D where where using U to approximate u intro-

duces a small error. The subdomain where U may be a poor approximation to u
includes the internal or shock layer. The internal-layer subdomain is the following
neighborhood of F:

(15) DIL = {(X,t)l(,t) D,I=-r'(t)l < A(t)}.

Here A(t) is the width of the internal-layer subdomain at time t. Theorem I dictates
that lu-Ut = O(P) in DIL when the Internal-layer subdomain has size 0(y)(t)e /4 In'2 v).

Thus, to obtain an a priori bound of O(e) on the error, the internal layer will be no
larger than A(t) < Kq(t)elI In'1/ e, where K is a constant independent of e. The
outer-region subdomain is the complement of DIL with respect to D,

(16) Doi = {(X,t)l(z,t) E D,1z- r-'(t)l > A(t)}.

Since the method is designed for small e, the internal-layer subdomain will be an
asymptotically small region surrounding the shock.

Since the solution to the reduced equation in the shock-layer subdomain may
result in large errors, the reduced equation will be solved only in DoR. The method
will use the full equation in DIL subject to data provided by the solution to the reduced

? :4
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equation in the outer region. An analysis of the error induced with this procedure is
presented in Corollary 2 below.

The local error bounds of Theorem 1 are now used to establish a global a priori
error bound when using this procedure. The bound, as presented is sharp in DoR;
however, the bound reflects the crude error bound of Theorem 1 in the region of the
shock.

COROLLARY 2. Let u be the solution to (1) satisfying (3-5). Suppose v is obtained
by first solving (7) in Do subject to (3-5), then solving (1) on DIL with boundary data
v on aDrL. Assume that the boundary data (3-5) satisfy the compxtibility conditions
(6) ,(8-9), and that a, 6 and -y, with their first and second derivatives are all bounded.
If E = Ilu - vi,1, then for e small enough

(17) E = 0(c)

in DoR, and

(18) E = 0(e/' in / ' e)

in DIL.

In the proof, a simple bound on the size of the solution in the internal layer is
established via a maximum principle argument. From there, the proof follows directly
from Theorem 1.

Proof. The L, norm is defined as

IIg(zt)Ij, f Ig(z,t)jddt.

Inequality (17) follows directly from applying the L, norm to the bound (13) of
Theorem 1.

Let

w(t) = K, + Kt.

The constant K3 may be chosen independent of e such that

P[w] _> P[v] = 0

for (z, t) E DIL., and the constant K, may be chosen independent of E such that

W >v

for (x, t) E aDrL. Thus, the conditions of the statement of the maximum principle
due to Nagumo and Westfal 1181 are satisfied, and w > v for all of DIL. A symmetric
argument can be used to establish a lower bounding function which has the same
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form as w. In addition, a similar argument can be used to establish upper and lower

bounds for u in DIL. Thus,

lu - V= 0(1)

for (z, t) E DIL. Since the area of DIL is O(e114 In1 /2 E), applying the L, norm, the
bound (18) follows. 0

Thus far, the problem has been preconditioned by decomposing the domain into
regions where the solution behaves differently, and forming subproblems in those
regions. Another preconditioning for the problem in the internal-layer subdomain is
also appropriate.

The preconditioning in the internal layer is a scaling and translation of the spatial
coordinate. The translation allows the coordinate system to move with the shock by
using z - r(t) in place of z. The scaling is to stretch the spatial coordinate by 1/e.
This scaling is identified via multiple-scale asymptotic analysis 19,12,16], and allows
the shock to be resolved in the local coordinate system Combining these two, the
new spatial coordinate in DIL is

(19) i= (z- r)/e.

The computational analog of this transformation is described in E5I or 1101.
Asymptotics identified two subdomains and provided preconditioners for the prob-

lerns within both subdomains. The domain decomposition algorithm described thus
far requires a priori knowledge of the location of the shock. To remove this restriction,
the domain decomposition is combined with a functional iteration. This allows for
the iterative determination of the shock location in the computational method.

4. Iteration. The domain decomposition algorithm described in the previous
section will now be treated as a single step in an iterative process. Each step of
this iteration requires the solution of a linearized form of the reduced equation (7) in
the outer-region subdomain followed by the solution of the full equation (1) in the
internal-layer subdomain. Denote the iterate by &A+'. The equations governing the
iterate are

(20) 6911+ +UkU r U- = 0

in DoR, and
+11 + &k + ,~k - & X21- ,0 +l = 0

(21) 01

in DIL. Boundary data for the internal-layer subdomain is provided by the solution
of (20) in the outer-region subdomain.

In this section, the convergence of the iteration (20) in the outer-region subdomain
to a solution of (7) will be established. In addition, a global a priori error bound for
the method will be presented. Throughout this section the conditions on the boundary
data presented in Section 2 are assumed to be satisfied.
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THEOREM 3. Let U1, U2, U3',... be the set of iterates of (20) in the subdomain
Doa eatisfying the boundary data (3-5) with initial guess 0 . Assume O eatiafies
(3-5) and is Lipsechitz continuous on D. Let

8 - sup - tr-lj.

D

Then

(22) Cr-  <6Cc-'(e'- 1)

for (z, t) E DoR, where C, A and R are known positive constants.

The proof utilizes some results on continuity of the iterates which will be estab-
lished first. The boundedness of tf+1 is the subject of the following lemma.

LEMMA 4. Let &h+1 be the solution to equation (20) on the aubdomain Dos,
where trh is Lipsechitz continuous. Then,

P(7 +11 < ke PW,
for (z, t) E DoR, where K and R are constants independent of z, t and c.

Proof. Consider the transformation (z, t) -- ( , r) defined by

(23) t=r,

and

(24) r), = y~k T),)ar

with initial conditions

(25) ( -)=, b > > 0;

(26) Z5 (v 1 (e)) = 0, < 0;

(27) z(y;'()) =, > b.

Here, ( ,r) = (o(r),r) is the image of the curve (x,t) = (0,t), and (rr) =(yb(r),r)

is the image of the curve (z,t) = (b,t). Under this transformation, equation (20)
becomes

(28) =

Since Ct is Lipschitz continuous, the transformation (23)-(27) is uniquely defined,
and equation (28) may be used in place of equation (20). A

- "-', I
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The coefficient r is bounded, hence there is a constant k independent of z, t, and
( such that o = kejr is an upper bound for & + '. In addition, W = -a is a lower
bound. Since t = r the desired result is established. [

Based on the assumption of the boundedness of 0., the boundedness of &.U+ ' is
established in Lemma 5.

LEMMA 5. Suppose that the conditiono of Lemma 4 obtain. Then &."+ I and
1+1 are bounded independent of z, t and e in DoR.

In the proof of this lemma, an equation governing 6,1+1 will be derived. Then, a
form of the maximum principle will be shown to apply after a change of the dependent
variable.

Proof. Let w ; &. The equation

(29) W (r - +
dz

is derived by taking the partial with respect to z of equation (20), then applying the
transformation (23)-(27). Boundary data for w may be obtained by differentiating
(3-5).

Let u; = e 'v. The equation governing v is

= (r ---- + dr

Choose A = - max(0, infD(r(z) - &.")), so that the coefficient of v in this equation
will be nonnegative.

Define an upper bounding function as

ra = K, e9

where the constants K, and K2 will be chosen. Then z = 0 - v satisfies

(30) z, = A(z, t) + E(z,t),

where A = r - A and B = [K, - (r - -)O + - The constants
K, and K, may be chosen so that A, B and z(z, 0) are nonnegative. For example,
choose

dr0K2 = max(2,sup(r - 0.k - X)) and K, = max(O, sup -r sup2v).
Doi Doid '

Under these conditions, x is positive, and G is an upper bound for v.
A lower bounding function may be obtained in a similar way. Set _ = K3 (eNr' - L)

If K, and A are chosen as before and

Ka = min(O, inf Oi,if2v),
s n

£ , .- --,. .... .' • -''; "... ... -.. : ' ? : "- ' "
, lIII* . . . . . I . . . . .= ,i I II I



then t - v Is nonpositive. Thus, ig is a lower bounding function for v.
Since T < T, the boundedness of &b+ independent of z, t and e follows. The

boundednes of tt+Y follows from the boundedness of the terms in equation (20).
Therefore, the desired result Is established. [

Given hat &° is Lipechits continuous, Lemma 5 states that all of the remaining
interates will be Lipschitz continuous. The significance of this is that the characteristic
#ransformatton (23)-(27) Is uniquely defined. This Is used in the proof of the theorem.

Proof. (Theorem 3). The equation governing z = k _ Uh+1 in the characteristic
coordinate system (23-27) is

x, = ((T-" - Oh)(tk+ l + ,,.

An exponential change of variable will transform the problem such that a form
of the maximum principle applies. Let

where A = - max(O, inf r(z)). Thus, the equation for w is

w, = ex(OC- I - CTI)(YA+1 + hw,

where P = r + A, and w 0 on 1l.
An upper bound for w may now be defined. Let

W(r) = 6 1
R(ex, - 1)'

where R = sup r - inf r = sup?. The constant q will be determined shortly. Taking
the partial derivative with respect to r,

An equation for f = - w is

(31) 1, =6n - er(Ob-' - &)Cr + ' + (R - f)w! + ff.

Since w _> 0 and w = 0 on 1H, the function f is nonnegative on H. Choose q =
max[O,1nfD x'Mtb+1. Thus, the nourc term In equation (31) is nonnegative, and
f > 0 In Doa. Thus w(r) 2: w(f,r) for (z(f, r),t(C, r)) in Doj. But t = r, hence

5 Ae-A(e - 1) 2 : = -_ ,

for K = t/R.
Using symmetric arguments, -w can be shown to be a lower bound on x, leading

to the desired result. 0
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This theorem provides an upper bound on the latest time for which the iteration
converges. Apply the infinity norm to (22) to obtain

Il01+ 1 - &I_ll 11' - O'-ll

Then the following corollary provides the conditions for convergence.

COROLLARY 6. Suppose that the conditions of Theorem 3 obtain. Restrict the
domain to DoR. Let T. be the largest positive number such that

- sup Ce-Al(eR.. 1) 1.

Then the sequence of iterates defined by (20) converges to a solution of (7) satisfying
the data (3-5) for the upper bound T on time of equation (2) satisfying TM" > T > 0.

Proof. With the restriction of t < T., the iteration is a contraction mapping,
and the result follows. [

A statement of a global a priori error bound for the computational method is
presented in Corollary 7 below. As with Corollary 2, the bound is sharp in Do);
however, the bound is crude in the region of the shock.

COROLLARY 7. Let u be the solution to (1) satisfying (3-5). Suppose each iterate
0k is obtained by first solving (20) in DOR subject to (3-5), then solving (21) on DIL
uith boundary data 0' on aDL. Suppose T.. > T > 0, and let v = lim_ "M
&I° . If E = Ilu - vJii, then for e small enough

(32) E = 0(c)

in Dot, and

(33) E = O(C1/4 In '1 e)

in DIL. Here A = O(e1/4 In'1 e).

To prove Corollary 7, it will first be established that 0' 0 is the desired solution
of equation (7). The bound in (32) will follow. Then, Lemma 8 will be applied to
establish the bound (33).

LEMMA 8. Let v be the solution to equation (1) on DrL. Suppose that the data
specified on 8DiL are bounded with bounded derivatives. Assume that 9DIL is at least
C'. Then

lvi < K,

for (z, t) E DI.,

In the proof of this lemma, upper and lower bounding functions for v are estab-
lished by applying the version of the maximum principle due to Nagumo and Westfal
118].

10
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Proof. Make the change of dependent variable to = e-1'v, where A satisfies
= r - A _< o < O. Then

AM[w := to, + e 'ww. - PW- E.= O.

where w = e-A'v on ODIL. Define

= k = ma(o, sup 1-MvI).
ODIrL

Then

PAlt7 = -Pok > P.%[wJ.

In addition, o > e-Atv - w for (z, t) E 8 DL. These conditions allow the application
of the Nagumo-Westfal Lemma to conclude i _> w for (z, t) E DIL. By symmetric
arguments, W_ = -r may be shown to be an lower bounding function on w. Setting
K = e Tk, the result is established. 0

Proof (Corollary 7). In the outer region, v = CT °, where bounds for u - v =
u- &' are given in (13-14). Thus, there is a constant KoR such that (u - &-I 5 EKoR
for (z, t) E Doe. Applying the L, norm to u - U^o, relation (32) is established.

From Lemma 8, there is a constant KL, such that 1u1 + IvI _5 KIL in DIL, where
KIL is independent of e. Thus,

E < f KILds.

Since the area covered by DIL is of size O(el/4 Inl/4 e), relation (33) holds. 0

5. Concluding Remarks. A computational method will be created from the
theory presented in the past few sections. The method is independent of the par-
ticular numerical schemes used; however, candidates for the numerical schemes will
be discussed. The computational method is be constructed by solving equation (21)
then solving equation (20) in succession. With minor modifications to account for the
forcing term, the method of characteristics may be used for (21), or the equation my
be solved using one of methods discussed in 11,17,3,14]. Equation (20) is solved in the
local coordinate system (19). In this coordinate system, the coefficient of the diffusion
is large enough to allow the application of standard finite difference methods.

In the most general case, the internal layer subdomain will change from iteration
to iteration. The theory presented in this paper restricts consideration to a stationary
internal-layer subdomain; however, experimental results demonstrate that this is not
a constraint In the numerical method [101. In addition, extensions to the theoretical
basis to include a moving boundary are the subject of promising current research.
When a1DIL is allowed to move between iterations, the method must be able to deter-
mine the location of the boundary as the computations proceed. This may be done
by monitoring the Jacobian of the characteristic transformation (23-27), as discussed

11



in [101. In addition, Lemma 5 suggests that monitoring CT may be used to place the
boundary. The value of i&.b will be large and negative in a neighborhood of the shock,
and it will be bounded independent of e in the outer-region.

This paper demonstrated the use of asymptotics to dictate a numerical method
with high accuracy and efficiency. Asymptotic analysis provided a theoretical basis
for a domain decomposition, and guided in the derivation of rigorous local and global
a priori error bounds.

The asymptotic analysis can be used to analyze existing methods as well as de-
velop new algorithms. For example, the analysis may be used to study the effects of
using artificial viscosity. Theorem 1 provides an a priori upper bound on the error
induced by using I in place of E where I > E. Such an equation would be solved when
using constant coefficient artificial diffusion. This bound may be obtained by using
the theorem to establish bounds separately on Iu(z, t, e) - Ul and Ju(z, t, e) - U1, then
summing them.

The availability of estimates and bounds on the error is important in the design of
numerical methods. Rigorous a priori error bounds were established for the method
presented here. In addition, the particular numerical schemes used for the subprob-
lems allowed a posteriori error estimation. The a priori error bounds were shown
to be much larger than the errors observed in the computations; thus, sharper error
bounds are expected.
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